Computer Science > Multiagent Systems
[Submitted on 18 Apr 2024 (v1), last revised 5 Jul 2024 (this version, v2)]
Title:JointPPO: Diving Deeper into the Effectiveness of PPO in Multi-Agent Reinforcement Learning
View PDF HTML (experimental)Abstract:While Centralized Training with Decentralized Execution (CTDE) has become the prevailing paradigm in Multi-Agent Reinforcement Learning (MARL), it may not be suitable for scenarios in which agents can fully communicate and share observations with each other. Fully centralized methods, also know as Centralized Training with Centralized Execution (CTCE) methods, can fully utilize observations of all the agents by treating the entire system as a single agent. However, traditional CTCE methods suffer from scalability issues due to the exponential growth of the joint action space. To address these challenges, in this paper we propose JointPPO, a CTCE method that uses Proximal Policy Optimization (PPO) to directly optimize the joint policy of the multi-agent system. JointPPO decomposes the joint policy into conditional probabilities, transforming the decision-making process into a sequence generation task. A Transformer-based joint policy network is constructed, trained with a PPO loss tailored for the joint policy. JointPPO effectively handles a large joint action space and extends PPO to multi-agent setting in a clear and concise manner. Extensive experiments on the StarCraft Multi-Agent Challenge (SMAC) testbed demonstrate the superiority of JointPPO over strong baselines. Ablation experiments and analyses are conducted to explores the factors influencing JointPPO's performance.
Submission history
From: Chenxing Liu [view email][v1] Thu, 18 Apr 2024 01:27:02 UTC (3,223 KB)
[v2] Fri, 5 Jul 2024 02:55:49 UTC (3,233 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.