Computer Science > Programming Languages
[Submitted on 6 Apr 2024]
Title:Compilation of Modular and General Sparse Workspaces
View PDF HTML (experimental)Abstract:Recent years have seen considerable work on compiling sparse tensor algebra expressions. This paper addresses a shortcoming in that work, namely how to generate efficient code (in time and space) that scatters values into a sparse result tensor. We address this shortcoming through a compiler design that generates code that uses sparse intermediate tensors (sparse workspaces) as efficient adapters between compute code that scatters and result tensors that do not support random insertion. Our compiler automatically detects sparse scattering behavior in tensor expressions and inserts necessary intermediate workspace tensors. We present an algorithm template for workspace insertion that is the backbone of our code generation algorithm. Our algorithm template is modular by design, supporting sparse workspaces that span multiple user-defined implementations. Our evaluation shows that sparse workspaces can be up to 27.12$\times$ faster than the dense workspaces of prior work. On the other hand, dense workspaces can be up to 7.58$\times$ faster than the sparse workspaces generated by our compiler in other situations, which motivates our compiler design that supports both. Our compiler produces sequential code that is competitive with hand-optimized linear and tensor algebra libraries on the expressions they support, but that generalizes to any other expression. Sparse workspaces are also more memory efficient than dense workspaces as they compress away zeros. This compression can asymptotically decrease memory usage, enabling tensor computations on data that would otherwise run out of memory.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.