Computer Science > Networking and Internet Architecture
[Submitted on 15 Feb 2024]
Title:X-lifecycle Learning for Cloud Incident Management using LLMs
View PDF HTML (experimental)Abstract:Incident management for large cloud services is a complex and tedious process and requires significant amount of manual efforts from on-call engineers (OCEs). OCEs typically leverage data from different stages of the software development lifecycle [SDLC] (e.g., codes, configuration, monitor data, service properties, service dependencies, trouble-shooting documents, etc.) to generate insights for detection, root causing and mitigating of incidents. Recent advancements in large language models [LLMs] (e.g., ChatGPT, GPT-4, Gemini) created opportunities to automatically generate contextual recommendations to the OCEs assisting them to quickly identify and mitigate critical issues. However, existing research typically takes a silo-ed view for solving a certain task in incident management by leveraging data from a single stage of SDLC. In this paper, we demonstrate that augmenting additional contextual data from different stages of SDLC improves the performance of two critically important and practically challenging tasks: (1) automatically generating root cause recommendations for dependency failure related incidents, and (2) identifying ontology of service monitors used for automatically detecting incidents. By leveraging 353 incident and 260 monitor dataset from Microsoft, we demonstrate that augmenting contextual information from different stages of the SDLC improves the performance over State-of-The-Art methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.