Computer Science > Information Theory
[Submitted on 3 Apr 2024]
Title:Wideband Beamforming for Near-Field Communications with Circular Arrays
View PDF HTML (experimental)Abstract:The beamforming performance of the uniform circular array (UCA) in near-field wideband communication systems is investigated. Compared to uniform linear array (ULA), UCA exhibits uniform effective array aperture in all directions, thus enabling more users to benefit from near-field communications. In this paper, the unique beam squint effect in near-field wideband UCA systems is comprehensively analyzed in both the distance and angular domains. It is rigorously demonstrated that the beam focal point only exists at a specific frequency in wideband UCA systems, resulting in significant beamforming loss. To alleviate this unique beam squint effect, the true-time delay (TTD)-based beamforming architecture is exploited. In particular, two wideband beamforming optimization approaches leveraging TTD units are proposed. 1) Analytical approach: In this approach, the phase shifters (PSs) and the time delay of TTD units are designed based on the analytical formula for beamforming gain. Following this design, the minimum number of TTD units required to achieve a predetermined beamforming gain is quantified. 2) Joint-optimization approach: In this method, the PSs and the TTD units are jointly optimized under practical maximum delay constraints to approximate the optimal unconstrained analog beamformer. Specifically, an efficient alternating optimization algorithm is proposed, where the PSs and the TTD units are alternately updated using either the closed-form solution or the low-complexity linear search approach. Extensive numerical results demonstrate that 1) the proposed beamforming schemes effectively mitigate the beam squint effect, and 2) the joint-optimization approach outperforms the analytical approach in terms of array gain and achievable spectral efficiency.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.