Computer Science > Computer Vision and Pattern Recognition
[Submitted on 2 Apr 2024]
Title:Task Integration Distillation for Object Detectors
View PDF HTML (experimental)Abstract:Knowledge distillation is a widely adopted technique for model lightening. However, the performance of most knowledge distillation methods in the domain of object detection is not satisfactory. Typically, knowledge distillation approaches consider only the classification task among the two sub-tasks of an object detector, largely overlooking the regression task. This oversight leads to a partial understanding of the object detector's comprehensive task, resulting in skewed estimations and potentially adverse effects. Therefore, we propose a knowledge distillation method that addresses both the classification and regression tasks, incorporating a task significance strategy. By evaluating the importance of features based on the output of the detector's two sub-tasks, our approach ensures a balanced consideration of both classification and regression tasks in object detection. Drawing inspiration from real-world teaching processes and the definition of learning condition, we introduce a method that focuses on both key and weak areas. By assessing the value of features for knowledge distillation based on their importance differences, we accurately capture the current model's learning situation. This method effectively prevents the issue of biased predictions about the model's learning reality caused by an incomplete utilization of the detector's outputs.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.