Computer Science > Cryptography and Security
[Submitted on 1 Apr 2024 (v1), last revised 17 Aug 2024 (this version, v2)]
Title:MagLive: Robust Voice Liveness Detection on Smartphones Using Magnetic Pattern Changes
View PDF HTML (experimental)Abstract:Voice authentication has been widely used on smartphones. However, it remains vulnerable to spoofing attacks, where the attacker replays recorded voice samples from authentic humans using loudspeakers to bypass the voice authentication system. In this paper, we present MagLive, a robust voice liveness detection scheme designed for smartphones to mitigate such spoofing attacks. MagLive leverages the differences in magnetic pattern changes generated by different speakers (i.e., humans or loudspeakers) when speaking for liveness detection, which are captured by the built-in magnetometer on smartphones. To extract effective and robust magnetic features, MagLive utilizes a TF-CNN-SAF model as the feature extractor, which includes a time-frequency convolutional neural network (TF-CNN) combined with a self-attention-based fusion (SAF) model. Supervised contrastive learning is then employed to achieve user-irrelevance, device-irrelevance, and content-irrelevance. MagLive imposes no additional burden on users and does not rely on active sensing or specialized hardware. We conducted comprehensive experiments with various settings to evaluate the security and robustness of MagLive. Our results demonstrate that MagLive effectively distinguishes between humans and attackers (i.e., loudspeakers), achieving an average balanced accuracy (BAC) of 99.01% and an equal error rate (EER) of 0.77%.
Submission history
From: Xiping Sun [view email][v1] Mon, 1 Apr 2024 13:27:24 UTC (3,447 KB)
[v2] Sat, 17 Aug 2024 13:41:58 UTC (1,873 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.