Computer Science > Machine Learning
[Submitted on 26 Mar 2024]
Title:VDSC: Enhancing Exploration Timing with Value Discrepancy and State Counts
View PDF HTML (experimental)Abstract:Despite the considerable attention given to the questions of \textit{how much} and \textit{how to} explore in deep reinforcement learning, the investigation into \textit{when} to explore remains relatively less researched. While more sophisticated exploration strategies can excel in specific, often sparse reward environments, existing simpler approaches, such as $\epsilon$-greedy, persist in outperforming them across a broader spectrum of domains. The appeal of these simpler strategies lies in their ease of implementation and generality across a wide range of domains. The downside is that these methods are essentially a blind switching mechanism, which completely disregards the agent's internal state. In this paper, we propose to leverage the agent's internal state to decide \textit{when} to explore, addressing the shortcomings of blind switching mechanisms. We present Value Discrepancy and State Counts through homeostasis (VDSC), a novel approach for efficient exploration timing. Experimental results on the Atari suite demonstrate the superiority of our strategy over traditional methods such as $\epsilon$-greedy and Boltzmann, as well as more sophisticated techniques like Noisy Nets.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.