Computer Science > Machine Learning
[Submitted on 25 Mar 2024]
Title:SignSGD with Federated Voting
View PDF HTML (experimental)Abstract:Distributed learning is commonly used for accelerating model training by harnessing the computational capabilities of multiple-edge devices. However, in practical applications, the communication delay emerges as a bottleneck due to the substantial information exchange required between workers and a central parameter server. SignSGD with majority voting (signSGD-MV) is an effective distributed learning algorithm that can significantly reduce communication costs by one-bit quantization. However, due to heterogeneous computational capabilities, it fails to converge when the mini-batch sizes differ among workers. To overcome this, we propose a novel signSGD optimizer with \textit{federated voting} (signSGD-FV). The idea of federated voting is to exploit learnable weights to perform weighted majority voting. The server learns the weights assigned to the edge devices in an online fashion based on their computational capabilities. Subsequently, these weights are employed to decode the signs of the aggregated local gradients in such a way to minimize the sign decoding error probability. We provide a unified convergence rate analysis framework applicable to scenarios where the estimated weights are known to the parameter server either perfectly or imperfectly. We demonstrate that the proposed signSGD-FV algorithm has a theoretical convergence guarantee even when edge devices use heterogeneous mini-batch sizes. Experimental results show that signSGD-FV outperforms signSGD-MV, exhibiting a faster convergence rate, especially in heterogeneous mini-batch sizes.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.