Computer Science > Cryptography and Security
[Submitted on 22 Mar 2024 (v1), last revised 26 Mar 2024 (this version, v2)]
Title:Snail: Secure Single Iteration Localization
View PDF HTML (experimental)Abstract:Localization is a computer vision task by which the position and orientation of a camera is determined from an image and environmental map. We propose a method for performing localization in a privacy preserving manner supporting two scenarios: first, when the image and map are held by a client who wishes to offload localization to untrusted third parties, and second, when the image and map are held separately by untrusting parties. Privacy preserving localization is necessary when the image and map are confidential, and offloading conserves on-device power and frees resources for other tasks. To accomplish this we integrate existing localization methods and secure multi-party computation (MPC), specifically garbled circuits, yielding proof-based security guarantees in contrast to existing obfuscation-based approaches which recent related work has shown vulnerable. We present two approaches to localization, a baseline data-oblivious adaptation of localization suitable for garbled circuits and our novel Single Iteration Localization. Our technique improves overall performance while maintaining confidentiality of the input image, map, and output pose at the expense of increased communication rounds but reduced computation and communication required per round. Single Iteration Localization is over two orders of magnitude faster than a straightforward application of garbled circuits to localization enabling real-world usage in the first robot to offload localization without revealing input images, environmental map, position, or orientation to offload servers.
Submission history
From: James Choncholas [view email][v1] Fri, 22 Mar 2024 02:41:14 UTC (31,148 KB)
[v2] Tue, 26 Mar 2024 22:09:58 UTC (25,606 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.