Computer Science > Software Engineering
[Submitted on 14 Mar 2024]
Title:Leveraging the Crowd for Dependency Management: An Empirical Study on the Dependabot Compatibility Score
View PDF HTML (experimental)Abstract:Dependabot, a popular dependency management tool, includes a compatibility score feature that helps client packages assess the risk of accepting a dependency update by leveraging knowledge from "the crowd". For each dependency update, Dependabot calculates this compatibility score as the proportion of successful updates performed by other client packages that use the same provider package as a dependency. In this paper, we study the efficacy of the compatibility score to help client packages assess the risks involved with accepting a dependency update. We analyze 579,206 pull requests opened by Dependabot to update a dependency, along with 618,045 compatibility score records calculated by Dependabot. We find that a compatibility score cannot be calculated for 83% of the dependency updates due to the lack of data from the crowd. Yet, the vast majority of the scores that can be calculated have a small confidence interval and are based on low-quality data, suggesting that client packages should have additional angles to evaluate the risk of an update and the trustworthiness of the compatibility score. To overcome these limitations, we propose metrics that amplify the input from the crowd and demonstrate the ability of those metrics to predict the acceptance of a successful update by client packages. We also demonstrate that historical update metrics from client packages can be used to provide a more personalized compatibility score. Based on our findings, we argue that, when leveraging the crowd, dependency management bots should include a confidence interval to help calibrate the trust clients can place in the compatibility score, and consider the quality of tests that exercise candidate updates.
Submission history
From: Benjamin Rombaut [view email][v1] Thu, 14 Mar 2024 00:26:19 UTC (4,936 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.