Computer Science > Machine Learning
[Submitted on 13 Mar 2024]
Title:Implicit Regularization of Gradient Flow on One-Layer Softmax Attention
View PDF HTML (experimental)Abstract:We study gradient flow on the exponential loss for a classification problem with a one-layer softmax attention model, where the key and query weight matrices are trained separately. Under a separability assumption on the data, we show that when gradient flow achieves the minimal loss value, it further implicitly minimizes the nuclear norm of the product of the key and query weight matrices. Such implicit regularization can be described by a Support Vector Machine (SVM) problem with respect to the attention weights. This finding contrasts with prior results showing that the gradient descent induces an implicit regularization on the Frobenius norm on the product weight matrix when the key and query matrices are combined into a single weight matrix for training. For diagonal key and query matrices, our analysis builds upon the reparameterization technique and exploits approximate KKT conditions of the SVM associated with the classification data. Moreover, the results are extended to general weights configurations given proper alignment of the weight matrices' singular spaces with the data features at initialization.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.