Computer Science > Programming Languages
[Submitted on 11 Mar 2024]
Title:Deriving Dependently-Typed OOP from First Principles -- Extended Version with Additional Appendices
View PDFAbstract:The expression problem describes how most types can easily be extended with new ways to produce the type or new ways to consume the type, but not both. When abstract syntax trees are defined as an algebraic data type, for example, they can easily be extended with new consumers, such as print or eval, but adding a new constructor requires the modification of all existing pattern matches. The expression problem is one way to elucidate the difference between functional or data-oriented programs (easily extendable by new consumers) and object-oriented programs (easily extendable by new producers). This difference between programs which are extensible by new producers or new consumers also exists for dependently typed programming, but with one core difference: Dependently-typed programming almost exclusively follows the functional programming model and not the object-oriented model, which leaves an interesting space in the programming language landscape unexplored. In this paper, we explore the field of dependently-typed object-oriented programming by deriving it from first principles using the principle of duality. That is, we do not extend an existing object-oriented formalism with dependent types in an ad-hoc fashion, but instead start from a familiar data-oriented language and derive its dual fragment by the systematic use of defunctionalization and refunctionalization. Our central contribution is a dependently typed calculus which contains two dual language fragments. We provide type- and semantics-preserving transformations between these two language fragments: defunctionalization and refunctionalization. We have implemented this language and these transformations and use this implementation to explain the various ways in which constructions in dependently typed programming can be explained as special instances of the phenomenon of duality.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.