Computer Science > Computational Engineering, Finance, and Science
[Submitted on 8 Mar 2024]
Title:Survival probability of structures under fatigue: a data-based approach
View PDF HTML (experimental)Abstract:This article addresses the probabilistic nature of fatigue life in structures subjected to cyclic loading with variable amplitude. Drawing on the formalisation of Miner's cumulative damage rule that we introduced in the recent article [Cartiaux, Ehrlacher, Legoll, Libal and Reygner, Prob. Eng. Mech. 2023], we apply our methodology to estimate the survival probability of an industrial structure using experimental data. The study considers both the randomness in the initial state of the structure and in the amplitude of loading cycles. The results indicate that the variability of loading cycles can be captured through the concept of deterministic equivalent damage, providing a computationally efficient method for assessing the fatigue life of the structure. Furthermore, the article highlights that the usual combination of Miner's rule and of the weakest link principle systematically overestimates the structure's fatigue life. On the case study that we consider, this overestimation reaches a multiplicative factor of more than two. We then describe how the probabilistic framework that we have introduced offers a remedy to this overestimation.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.