Computer Science > Computer Vision and Pattern Recognition
[Submitted on 6 Mar 2024 (v1), last revised 11 Jul 2024 (this version, v3)]
Title:Latent Dataset Distillation with Diffusion Models
View PDF HTML (experimental)Abstract:Machine learning traditionally relies on increasingly larger datasets. Yet, such datasets pose major storage challenges and usually contain non-influential samples, which could be ignored during training without negatively impacting the training quality. In response, the idea of distilling a dataset into a condensed set of synthetic samples, i.e., a distilled dataset, emerged. One key aspect is the selected architecture, usually ConvNet, for linking the original and synthetic datasets. However, the final accuracy is lower if the employed model architecture differs from that used during distillation. Another challenge is the generation of high-resolution images (128x128 and higher). To address both challenges, this paper proposes Latent Dataset Distillation with Diffusion Models (LD3M) that combine diffusion in latent space with dataset distillation. Our novel diffusion process is tailored for this task and significantly improves the gradient flow for distillation. By adjusting the number of diffusion steps, LD3M also offers a convenient way of controlling the trade-off between distillation speed and dataset quality. Overall, LD3M consistently outperforms state-of-the-art methods by up to 4.8 p.p. and 4.2 p.p. for 1 and 10 images per class, respectively, and on several ImageNet subsets and high resolutions (128x128 and 256x256).
Submission history
From: Brian Moser [view email][v1] Wed, 6 Mar 2024 17:41:41 UTC (60,221 KB)
[v2] Sun, 24 Mar 2024 21:38:49 UTC (60,221 KB)
[v3] Thu, 11 Jul 2024 09:10:10 UTC (75,287 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.