Computer Science > Computation and Language
[Submitted on 2 Mar 2024 (v1), last revised 8 Nov 2024 (this version, v3)]
Title:Accelerating Greedy Coordinate Gradient and General Prompt Optimization via Probe Sampling
View PDF HTML (experimental)Abstract:Safety of Large Language Models (LLMs) has become a critical issue given their rapid progresses. Greedy Coordinate Gradient (GCG) is shown to be effective in constructing adversarial prompts to break the aligned LLMs, but optimization of GCG is time-consuming. To reduce the time cost of GCG and enable more comprehensive studies of LLM safety, in this work, we study a new algorithm called $\texttt{Probe sampling}$. At the core of the algorithm is a mechanism that dynamically determines how similar a smaller draft model's predictions are to the target model's predictions for prompt candidates. When the target model is similar to the draft model, we rely heavily on the draft model to filter out a large number of potential prompt candidates. Probe sampling achieves up to $5.6$ times speedup using Llama2-7b-chat and leads to equal or improved attack success rate (ASR) on the AdvBench. Furthermore, probe sampling is also able to accelerate other prompt optimization techniques and adversarial methods, leading to acceleration of $1.8\times$ for AutoPrompt, $2.4\times$ for APE and $2.4\times$ for AutoDAN.
Submission history
From: Yiran Zhao [view email][v1] Sat, 2 Mar 2024 16:23:44 UTC (3,827 KB)
[v2] Mon, 27 May 2024 07:02:28 UTC (4,022 KB)
[v3] Fri, 8 Nov 2024 06:07:51 UTC (4,048 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.