Computer Science > Robotics
[Submitted on 26 Feb 2024 (v1), last revised 20 Jul 2024 (this version, v2)]
Title:Think2Drive: Efficient Reinforcement Learning by Thinking in Latent World Model for Quasi-Realistic Autonomous Driving (in CARLA-v2)
View PDF HTML (experimental)Abstract:Real-world autonomous driving (AD) especially urban driving involves many corner cases. The lately released AD simulator CARLA v2 adds 39 common events in the driving scene, and provide more quasi-realistic testbed compared to CARLA v1. It poses new challenge to the community and so far no literature has reported any success on the new scenarios in V2 as existing works mostly have to rely on specific rules for planning yet they cannot cover the more complex cases in CARLA v2. In this work, we take the initiative of directly training a planner and the hope is to handle the corner cases flexibly and effectively, which we believe is also the future of AD. To our best knowledge, we develop the first model-based RL method named Think2Drive for AD, with a world model to learn the transitions of the environment, and then it acts as a neural simulator to train the planner. This paradigm significantly boosts the training efficiency due to the low dimensional state space and parallel computing of tensors in the world model. As a result, Think2Drive is able to run in an expert-level proficiency in CARLA v2 within 3 days of training on a single A6000 GPU, and to our best knowledge, so far there is no reported success (100\% route completion)on CARLA v2. We also propose CornerCase-Repository, a benchmark that supports the evaluation of driving models by scenarios. Additionally, we propose a new and balanced metric to evaluate the performance by route completion, infraction number, and scenario density, so that the driving score could give more information about the actual driving performance.
Submission history
From: Xiaosong Jia [view email][v1] Mon, 26 Feb 2024 16:43:17 UTC (5,067 KB)
[v2] Sat, 20 Jul 2024 08:07:47 UTC (4,910 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.