Computer Science > Social and Information Networks
[Submitted on 24 Feb 2024]
Title:Exit Ripple Effects: Understanding the Disruption of Socialization Networks Following Employee Departures
View PDF HTML (experimental)Abstract:Amidst growing uncertainty and frequent restructurings, the impacts of employee exits are becoming one of the central concerns for organizations. Using rich communication data from a large holding company, we examine the effects of employee departures on socialization networks among the remaining coworkers. Specifically, we investigate how network metrics change among people who historically interacted with departing employees. We find evidence of ``breakdown" in communication among the remaining coworkers, who tend to become less connected with fewer interactions after their coworkers' departure. This effect appears to be moderated by both external factors, such as periods of high organizational stress, and internal factors, such as the characteristics of the departing employee. At the external level, periods of high stress correspond to greater communication breakdown; at the internal level, however, we find patterns suggesting individuals may end up better positioned in their networks after a network neighbor's departure. Overall, our study provides critical insights into managing workforce changes and preserving communication dynamics in the face of employee exits.
Current browse context:
cs.SI
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.