Computer Science > Computation and Language
[Submitted on 18 Feb 2024 (v1), last revised 19 Jun 2024 (this version, v2)]
Title:MSynFD: Multi-hop Syntax aware Fake News Detection
View PDF HTML (experimental)Abstract:The proliferation of social media platforms has fueled the rapid dissemination of fake news, posing threats to our real-life society. Existing methods use multimodal data or contextual information to enhance the detection of fake news by analyzing news content and/or its social context. However, these methods often overlook essential textual news content (articles) and heavily rely on sequential modeling and global attention to extract semantic information. These existing methods fail to handle the complex, subtle twists in news articles, such as syntax-semantics mismatches and prior biases, leading to lower performance and potential failure when modalities or social context are missing. To bridge these significant gaps, we propose a novel multi-hop syntax aware fake news detection (MSynFD) method, which incorporates complementary syntax information to deal with subtle twists in fake news. Specifically, we introduce a syntactical dependency graph and design a multi-hop subgraph aggregation mechanism to capture multi-hop syntax. It extends the effect of word perception, leading to effective noise filtering and adjacent relation enhancement. Subsequently, a sequential relative position-aware Transformer is designed to capture the sequential information, together with an elaborate keyword debiasing module to mitigate the prior bias. Extensive experimental results on two public benchmark datasets verify the effectiveness and superior performance of our proposed MSynFD over state-of-the-art detection models.
Submission history
From: Qi Zhang [view email][v1] Sun, 18 Feb 2024 05:40:33 UTC (9,531 KB)
[v2] Wed, 19 Jun 2024 13:15:34 UTC (9,531 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.