Computer Science > Computer Vision and Pattern Recognition
[Submitted on 22 Feb 2024 (v1), last revised 4 Dec 2024 (this version, v3)]
Title:Learning Developmental Age from 3D Infant Kinetics Using Adaptive Graph Neural Networks
View PDF HTML (experimental)Abstract:Reliable methods for the neurodevelopmental assessment of infants are essential for early detection of problems that may need prompt interventions. Spontaneous motor activity, or 'kinetics', is shown to provide a powerful surrogate measure of upcoming neurodevelopment. However, its assessment is by and large qualitative and subjective, focusing on visually identified, age-specific gestures. In this work, we introduce Kinetic Age (KA), a novel data-driven metric that quantifies neurodevelopmental maturity by predicting an infant's age based on their movement patterns. KA offers an interpretable and generalizable proxy for motor development. Our method leverages 3D video recordings of infants, processed with pose estimation to extract spatio-temporal series of anatomical landmarks, which are released as a new openly available dataset. These data are modeled using adaptive graph convolutional networks, able to capture the spatio-temporal dependencies in infant movements. We also show that our data-driven approach achieves improvement over traditional machine learning baselines based on manually engineered features.
Submission history
From: Daniel Holmberg [view email][v1] Thu, 22 Feb 2024 09:34:48 UTC (357 KB)
[v2] Thu, 20 Jun 2024 06:34:06 UTC (357 KB)
[v3] Wed, 4 Dec 2024 09:44:26 UTC (3,747 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.