Computer Science > Software Engineering
[Submitted on 20 Feb 2024 (v1), last revised 5 Mar 2024 (this version, v2)]
Title:Measuring Impacts of Poisoning on Model Parameters and Neuron Activations: A Case Study of Poisoning CodeBERT
View PDF HTML (experimental)Abstract:Large language models (LLMs) have revolutionized software development practices, yet concerns about their safety have arisen, particularly regarding hidden backdoors, aka trojans. Backdoor attacks involve the insertion of triggers into training data, allowing attackers to manipulate the behavior of the model maliciously. In this paper, we focus on analyzing the model parameters to detect potential backdoor signals in code models. Specifically, we examine attention weights and biases, activation values, and context embeddings of the clean and poisoned CodeBERT models. Our results suggest noticeable patterns in activation values and context embeddings of poisoned samples for the poisoned CodeBERT model; however, attention weights and biases do not show any significant differences. This work contributes to ongoing efforts in white-box detection of backdoor signals in LLMs of code through the analysis of parameters and activations.
Submission history
From: Aftab Hussain [view email][v1] Tue, 20 Feb 2024 11:38:43 UTC (1,609 KB)
[v2] Tue, 5 Mar 2024 09:22:01 UTC (1,753 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.