Computer Science > Sound
[Submitted on 19 Feb 2024]
Title:Soft-Weighted CrossEntropy Loss for Continous Alzheimer's Disease Detection
View PDF HTML (experimental)Abstract:Alzheimer's disease is a common cognitive disorder in the elderly. Early and accurate diagnosis of Alzheimer's disease (AD) has a major impact on the progress of research on dementia. At present, researchers have used machine learning methods to detect Alzheimer's disease from the speech of participants. However, the recognition accuracy of current methods is unsatisfactory, and most of them focus on using low-dimensional handcrafted features to extract relevant information from audios. This paper proposes an Alzheimer's disease detection system based on the pre-trained framework Wav2vec 2.0 (Wav2vec2). In addition, by replacing the loss function with the Soft-Weighted CrossEntropy loss function, we achieved 85.45\% recognition accuracy on the same test dataset.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.