Computer Science > Computation and Language
[Submitted on 18 Feb 2024 (v1), last revised 3 Jan 2025 (this version, v3)]
Title:Chain-of-Instructions: Compositional Instruction Tuning on Large Language Models
View PDF HTML (experimental)Abstract:Fine-tuning large language models (LLMs) with a collection of large and diverse instructions has improved the model's generalization to different tasks, even for unseen tasks. However, most existing instruction datasets include only single instructions, and they struggle to follow complex instructions composed of multiple subtasks. In this work, we propose a novel concept of compositional instructions called chain-of-instructions (CoI), where the output of one instruction becomes an input for the next like a chain. Unlike the conventional practice of solving single instruction tasks, our proposed method encourages a model to solve each subtask step by step until the final answer is reached. CoI-tuning (i.e., fine-tuning with CoI instructions) improves the model's ability to handle instructions composed of multiple subtasks as well as unseen composite tasks such as multilingual summarization. Overall, our study find that simple CoI tuning of existing instruction data can provide consistent generalization to solve more complex, unseen, and longer chains of instructions.
Submission history
From: Shirley Anugrah Hayati [view email][v1] Sun, 18 Feb 2024 10:10:40 UTC (3,092 KB)
[v2] Mon, 24 Jun 2024 22:43:57 UTC (4,752 KB)
[v3] Fri, 3 Jan 2025 22:50:35 UTC (7,476 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.