Computer Science > Sound
[Submitted on 16 Feb 2024 (v1), last revised 24 Sep 2024 (this version, v2)]
Title:APCodec: A Neural Audio Codec with Parallel Amplitude and Phase Spectrum Encoding and Decoding
View PDF HTML (experimental)Abstract:This paper introduces a novel neural audio codec targeting high waveform sampling rates and low bitrates named APCodec, which seamlessly integrates the strengths of parametric codecs and waveform codecs. The APCodec revolutionizes the process of audio encoding and decoding by concurrently handling the amplitude and phase spectra as audio parametric characteristics like parametric codecs. It is composed of an encoder and a decoder with the modified ConvNeXt v2 network as the backbone, connected by a quantizer based on the residual vector quantization (RVQ) mechanism. The encoder compresses the audio amplitude and phase spectra in parallel, amalgamating them into a continuous latent code at a reduced temporal resolution. This code is subsequently quantized by the quantizer. Ultimately, the decoder reconstructs the audio amplitude and phase spectra in parallel, and the decoded waveform is obtained by inverse short-time Fourier transform. To ensure the fidelity of decoded audio like waveform codecs, spectral-level loss, quantization loss, and generative adversarial network (GAN) based loss are collectively employed for training the APCodec. To support low-latency streamable inference, we employ feed-forward layers and causal deconvolutional layers in APCodec, incorporating a knowledge distillation training strategy to enhance the quality of decoded audio. Experimental results confirm that our proposed APCodec can encode 48 kHz audio at bitrate of just 6 kbps, with no significant degradation in the quality of the decoded audio. At the same bitrate, our proposed APCodec also demonstrates superior decoded audio quality and faster generation speed compared to well-known codecs, such as Encodec, AudioDec and DAC.
Submission history
From: Yang Ai [view email][v1] Fri, 16 Feb 2024 09:38:16 UTC (1,283 KB)
[v2] Tue, 24 Sep 2024 01:14:07 UTC (1,126 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.