Computer Science > Computation and Language
[Submitted on 19 Jan 2024 (v1), last revised 11 Feb 2024 (this version, v2)]
Title:Quantifying Similarity: Text-Mining Approaches to Evaluate ChatGPT and Google Bard Content in Relation to BioMedical Literature
View PDFAbstract:Background: The emergence of generative AI tools, empowered by Large Language Models (LLMs), has shown powerful capabilities in generating content. To date, the assessment of the usefulness of such content, generated by what is known as prompt engineering, has become an interesting research question. Objectives Using the mean of prompt engineering, we assess the similarity and closeness of such contents to real literature produced by scientists. Methods In this exploratory analysis, (1) we prompt-engineer ChatGPT and Google Bard to generate clinical content to be compared with literature counterparts, (2) we assess the similarities of the contents generated by comparing them with counterparts from biomedical literature. Our approach is to use text-mining approaches to compare documents and associated bigrams and to use network analysis to assess the terms' centrality. Results The experiments demonstrated that ChatGPT outperformed Google Bard in cosine document similarity (38% to 34%), Jaccard document similarity (23% to 19%), TF-IDF bigram similarity (47% to 41%), and term network centrality (degree and closeness). We also found new links that emerged in ChatGPT bigram networks that did not exist in literature bigram networks. Conclusions: The obtained similarity results show that ChatGPT outperformed Google Bard in document similarity, bigrams, and degree and closeness centrality. We also observed that ChatGPT offers linkage to terms that are connected in the literature. Such connections could inspire asking interesting questions and generate new hypotheses.
Submission history
From: Ahmed Abdeen Hamed Ph.D [view email][v1] Fri, 19 Jan 2024 17:14:46 UTC (3,859 KB)
[v2] Sun, 11 Feb 2024 22:50:17 UTC (3,857 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.