Computer Science > Information Retrieval
[Submitted on 4 Feb 2024]
Title:Modified K-means with Cluster Assignment -- Application to COVID-19 Data
View PDFAbstract:Text extraction is a highly subjective problem which depends on the dataset that one is working on and the kind of summarization details that needs to be extracted out. All the steps ranging from preprocessing of the data, to the choice of an optimal model for predictions, depends on the problem and the corpus at hand. In this paper, we describe a text extraction model where the aim is to extract word specified information relating to the semantics such that we can get all related and meaningful information about that word in a succinct format. This model can obtain meaningful results and can augment ubiquitous search model or a normal clustering or topic modelling algorithms. By utilizing new technique called two cluster assignment technique with K-means model, we improved the ontology of the retrieved text. We further apply the vector average damping technique for flexible movement of clusters. Our experimental results on a recent corpus of Covid-19 shows that we obtain good results based on main keywords.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.