Computer Science > Computation and Language
[Submitted on 4 Feb 2024]
Title:Absolute convergence and error thresholds in non-active adaptive sampling
View PDF HTML (experimental)Abstract:Non-active adaptive sampling is a way of building machine learning models from a training data base which are supposed to dynamically and automatically derive guaranteed sample size. In this context and regardless of the strategy used in both scheduling and generating of weak predictors, a proposal for calculating absolute convergence and error thresholds is described. We not only make it possible to establish when the quality of the model no longer increases, but also supplies a proximity condition to estimate in absolute terms how close it is to achieving such a goal, thus supporting decision making for fine-tuning learning parameters in model selection. The technique proves its correctness and completeness with respect to our working hypotheses, in addition to strengthening the robustness of the sampling scheme. Tests meet our expectations and illustrate the proposal in the domain of natural language processing, taking the generation of part-of-speech taggers as case study.
Submission history
From: Víctor Manuel Darriba Bilbao [view email][v1] Sun, 4 Feb 2024 15:10:34 UTC (688 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.