Computer Science > Networking and Internet Architecture
[Submitted on 1 Feb 2024 (v1), last revised 6 Aug 2024 (this version, v2)]
Title:Experimental Evaluation of Interactive Edge/Cloud Virtual Reality Gaming over Wi-Fi using Unity Render Streaming
View PDF HTML (experimental)Abstract:Virtual Reality (VR) streaming enables end-users to seamlessly immerse themselves in interactive virtual environments using even low-end devices. However, the quality of the VR experience heavily relies on Wireless Fidelity (Wi-Fi) performance, since it serves as the last hop in the network chain. Our study delves into the intricate interplay between Wi-Fi and VR traffic, drawing upon empirical data and leveraging a Wi-Fi simulator. In this work, we further evaluate Wi-Fi's suitability for VR streaming in terms of the Quality of Service (QoS) it provides. In particular, we employ Unity Render Streaming to remotely stream real-time VR gaming content over Wi-Fi 6 using Web Real-Time Communication (WebRTC), considering a server physically located at the network's edge, near the end user. Our findings demonstrate the system's sustained network performance, showcasing minimal round-trip time (RTT) and jitter at 60 and 90 frames per second (fps). In addition, we uncover the characteristics and patterns of the generated traffic streams, unveiling a distinctive video transmission approach inherent to WebRTC-based services: the systematic packetization of video frames (VFs) and their transmission in discrete batches at regular intervals, regardless of the targeted frame rate. This interval-based transmission strategy maintains consistent video packet delays across video frame rates but leads to increased Wi-Fi airtime consumption. Our results demonstrate that shortening the interval between batches is advantageous, as it enhances Wi-Fi efficiency and reduces delays in delivering complete frames.
Submission history
From: Miguel Casasnovas [view email][v1] Thu, 1 Feb 2024 12:06:41 UTC (1,206 KB)
[v2] Tue, 6 Aug 2024 15:22:24 UTC (1,794 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.