Computer Science > Machine Learning
[Submitted on 24 Jan 2024 (v1), last revised 24 May 2024 (this version, v3)]
Title:Continuous-time Riemannian SGD and SVRG Flows on Wasserstein Probabilistic Space
View PDF HTML (experimental)Abstract:Recently, optimization on the Riemannian manifold has provided new insights to the optimization community. In this regard, the manifold taken as the probability measure metric space equipped with the second-order Wasserstein distance is of particular interest, since optimization on it can be linked to practical sampling processes. In general, the standard (continuous) optimization method on Wasserstein space is Riemannian gradient flow (i.e., Langevin dynamics when minimizing KL divergence). In this paper, we aim to enrich the continuous optimization methods in the Wasserstein space, by extending the gradient flow on it into the stochastic gradient descent (SGD) flow and stochastic variance reduction gradient (SVRG) flow. The two flows in Euclidean space are standard continuous stochastic methods, while their Riemannian counterparts are unexplored. By leveraging the property of Wasserstein space, we construct stochastic differential equations (SDEs) to approximate the corresponding discrete dynamics of desired Riemannian stochastic methods in Euclidean space. Then, our probability measures flows are obtained by the Fokker-Planck equation. Finally, the convergence rates of our Riemannian stochastic flows are proven, which match the results in Euclidean space.
Submission history
From: Mingyang Yi [view email][v1] Wed, 24 Jan 2024 15:35:44 UTC (58 KB)
[v2] Thu, 25 Jan 2024 07:01:34 UTC (58 KB)
[v3] Fri, 24 May 2024 08:04:03 UTC (51 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.