Computer Science > Networking and Internet Architecture
[Submitted on 19 Jan 2024]
Title:Empowering HWNs with Efficient Data Labeling: A Clustered Federated Semi-Supervised Learning Approach
View PDF HTML (experimental)Abstract:Clustered Federated Multitask Learning (CFL) has gained considerable attention as an effective strategy for overcoming statistical challenges, particularly when dealing with non independent and identically distributed (non IID) data across multiple users. However, much of the existing research on CFL operates under the unrealistic premise that devices have access to accurate ground truth labels. This assumption becomes especially problematic in hierarchical wireless networks (HWNs), where edge networks contain a large amount of unlabeled data, resulting in slower convergence rates and increased processing times, particularly when dealing with two layers of model aggregation. To address these issues, we introduce a novel framework, Clustered Federated Semi-Supervised Learning (CFSL), designed for more realistic HWN scenarios. Our approach leverages a best-performing specialized model algorithm, wherein each device is assigned a specialized model that is highly adept at generating accurate pseudo-labels for unlabeled data, even when the data stems from diverse environments. We validate the efficacy of CFSL through extensive experiments, comparing it with existing methods highlighted in recent literature. Our numerical results demonstrate that CFSL significantly improves upon key metrics such as testing accuracy, labeling accuracy, and labeling latency under varying proportions of labeled and unlabeled data while also accommodating the non-IID nature of the data and the unique characteristics of wireless edge networks.
Submission history
From: Abdullatif Albaseer Mr [view email][v1] Fri, 19 Jan 2024 11:47:49 UTC (2,286 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.