Computer Science > Computer Vision and Pattern Recognition
[Submitted on 18 Jan 2024 (v1), last revised 20 Aug 2024 (this version, v5)]
Title:SVIPTR: Fast and Efficient Scene Text Recognition with Vision Permutable Extractor
View PDF HTML (experimental)Abstract:Scene Text Recognition (STR) is an important and challenging upstream task for building structured information databases, that involves recognizing text within images of natural scenes. Although current state-of-the-art (SOTA) models for STR exhibit high performance, they typically suffer from low inference efficiency due to their reliance on hybrid architectures comprised of visual encoders and sequence decoders. In this work, we propose a VIsion Permutable extractor for fast and efficient Scene Text Recognition (SVIPTR), which achieves an impressive balance between high performance and rapid inference speeds in the domain of STR. Specifically, SVIPTR leverages a visual-semantic extractor with a pyramid structure, characterized by the Permutation and combination of local and global self-attention layers. This design results in a lightweight and efficient model and its inference is insensitive to input length. Extensive experimental results on various standard datasets for both Chinese and English scene text recognition validate the superiority of SVIPTR. Notably, the SVIPTR-T (Tiny) variant delivers highly competitive accuracy on par with other lightweight models and achieves SOTA inference speeds. Meanwhile, the SVIPTR-L (Large) attains SOTA accuracy in single-encoder-type models, while maintaining a low parameter count and favorable inference speed. Our proposed method provides a compelling solution for the STR challenge, which greatly benefits real-world applications requiring fast and efficient STR. The code is publicly available at this https URL.
Submission history
From: Xianfu Cheng [view email][v1] Thu, 18 Jan 2024 16:27:09 UTC (1,412 KB)
[v2] Fri, 19 Jan 2024 02:31:02 UTC (1,412 KB)
[v3] Wed, 24 Jan 2024 03:05:53 UTC (1,751 KB)
[v4] Thu, 8 Aug 2024 08:42:31 UTC (2,844 KB)
[v5] Tue, 20 Aug 2024 02:34:29 UTC (2,844 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.