Computer Science > Computer Vision and Pattern Recognition
[Submitted on 18 Jan 2024 (v1), last revised 18 Jul 2024 (this version, v2)]
Title:Advancing Large Multi-modal Models with Explicit Chain-of-Reasoning and Visual Question Generation
View PDF HTML (experimental)Abstract:The increasing demand for intelligent systems capable of interpreting and reasoning about visual content requires the development of large Vision-and-Language Models (VLMs) that are not only accurate but also have explicit reasoning capabilities. This paper presents a novel approach to develop a VLM with the ability to conduct explicit reasoning based on visual content and textual instructions. We introduce a system that can ask a question to acquire necessary knowledge, thereby enhancing the robustness and explicability of the reasoning process. To this end, we developed a novel dataset generated by a Large Language Model (LLM), designed to promote chain-of-thought reasoning combined with a question-asking mechanism. The dataset covers a range of tasks, from common ones like caption generation to specialized VQA tasks that require expert knowledge. Furthermore, using the dataset we created, we fine-tuned an existing VLM. This training enabled the models to generate questions and perform iterative reasoning during inference. The results demonstrated a stride toward a more robust, accurate, and interpretable VLM, capable of reasoning explicitly and seeking information proactively when confronted with ambiguous visual input.
Submission history
From: Kohei Uehara [view email][v1] Thu, 18 Jan 2024 14:21:56 UTC (1,789 KB)
[v2] Thu, 18 Jul 2024 02:35:30 UTC (6,527 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.