Quantitative Biology > Neurons and Cognition
[Submitted on 17 Jan 2024 (v1), last revised 28 May 2024 (this version, v3)]
Title:MorphGrower: A Synchronized Layer-by-layer Growing Approach for Plausible Neuronal Morphology Generation
View PDF HTML (experimental)Abstract:Neuronal morphology is essential for studying brain functioning and understanding neurodegenerative disorders. As acquiring real-world morphology data is expensive, computational approaches for morphology generation have been studied. Traditional methods heavily rely on expert-set rules and parameter tuning, making it difficult to generalize across different types of morphologies. Recently, MorphVAE was introduced as the sole learning-based method, but its generated morphologies lack plausibility, i.e., they do not appear realistic enough and most of the generated samples are topologically invalid. To fill this gap, this paper proposes MorphGrower, which mimicks the neuron natural growth mechanism for generation. Specifically, MorphGrower generates morphologies layer by layer, with each subsequent layer conditioned on the previously generated structure. During each layer generation, MorphGrower utilizes a pair of sibling branches as the basic generation block and generates branch pairs synchronously. This approach ensures topological validity and allows for fine-grained generation, thereby enhancing the realism of the final generated morphologies. Results on four real-world datasets demonstrate that MorphGrower outperforms MorphVAE by a notable margin. Importantly, the electrophysiological response simulation demonstrates the plausibility of our generated samples from a neuroscience perspective. Our code is available at this https URL.
Submission history
From: Nianzu Yang [view email][v1] Wed, 17 Jan 2024 09:03:14 UTC (9,515 KB)
[v2] Thu, 23 May 2024 07:53:22 UTC (11,043 KB)
[v3] Tue, 28 May 2024 03:10:59 UTC (11,042 KB)
Current browse context:
q-bio.NC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.