Computer Science > Human-Computer Interaction
[Submitted on 16 Jan 2024 (v1), last revised 15 Oct 2024 (this version, v3)]
Title:Interrogating AI: Characterizing Emergent Playful Interactions with ChatGPT
View PDF HTML (experimental)Abstract:In an era of AI's growing capabilities and influences, recent advancements are reshaping HCI and CSCW's view of AI. Playful interactions emerged as an important way for users to make sense of the ever-changing AI technologies, yet remained underexamined. We target this gap by investigating playful interactions exhibited by users of a popular AI technology, ChatGPT. Through a thematic analysis of 372 user-generated posts on the ChatGPT subreddit, we found that more than half (54\%) of user discourse revolved around playful interactions. The analysis further allowed us to construct a preliminary framework to describe these interactions, categorizing them into six types: reflecting, jesting, imitating, challenging, tricking, and contriving; each included sub-categories. This study contributes to HCI and CSCW by identifying the diverse ways users engage in playful interactions with AI. It examines how these interactions can help users understand AI's agency, shape human-AI relationships, and provide insights for designing AI systems.
Submission history
From: Jinghui Cheng [view email][v1] Tue, 16 Jan 2024 14:44:13 UTC (36 KB)
[v2] Mon, 22 Jul 2024 16:44:14 UTC (56 KB)
[v3] Tue, 15 Oct 2024 02:57:10 UTC (55 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.