Computer Science > Machine Learning
[Submitted on 16 Jan 2024 (v1), last revised 6 Aug 2024 (this version, v3)]
Title:SpecSTG: A Fast Spectral Diffusion Framework for Probabilistic Spatio-Temporal Traffic Forecasting
View PDF HTML (experimental)Abstract:Traffic forecasting, a crucial application of spatio-temporal graph (STG) learning, has traditionally relied on deterministic models for accurate point estimations. Yet, these models fall short of quantifying future uncertainties. Recently, many probabilistic methods, especially variants of diffusion models, have been proposed to fill this gap. However, existing diffusion methods typically deal with individual sensors separately when generating future time series, resulting in limited usage of spatial information in the probabilistic learning process. In this work, we propose SpecSTG, a novel spectral diffusion framework, to better leverage spatial dependencies and systematic patterns inherent in traffic data. More specifically, our method generates the Fourier representation of future time series, transforming the learning process into the spectral domain enriched with spatial information. Additionally, our approach incorporates a fast spectral graph convolution designed for Fourier input, alleviating the computational burden associated with existing models. Compared with state-of-the-arts, SpecSTG achieves up to 8% improvements on point estimations and up to 0.78% improvements on quantifying future uncertainties. Furthermore, SpecSTG's training and validation speed is 3.33X of the most efficient existing diffusion method for STG forecasting. The source code for SpecSTG is available at this https URL.
Submission history
From: Lequan Lin [view email][v1] Tue, 16 Jan 2024 05:23:34 UTC (863 KB)
[v2] Tue, 23 Jan 2024 06:14:04 UTC (1,563 KB)
[v3] Tue, 6 Aug 2024 23:09:06 UTC (1,266 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.