Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 5 Jan 2024 (v1), last revised 4 Jul 2024 (this version, v2)]
Title:Infinite-LLM: Efficient LLM Service for Long Context with DistAttention and Distributed KVCache
View PDF HTML (experimental)Abstract:Large Language Models (LLMs) demonstrate substantial potential across a diverse array of domains via request serving. However, as trends continue to push for expanding context sizes, the autoregressive nature of LLMs results in highly dynamic behavior of the attention layers, showcasing significant differences in computational characteristics and memory requirements from the non-attention layers. This presents substantial challenges for resource management and performance optimization in service systems. Existing static model parallelism and resource allocation strategies fall short when dealing with this dynamicity. To address the issue, we propose Infinite-LLM, a novel LLM serving system designed to effectively handle dynamic context lengths. Infinite-LLM disaggregates attention layers from an LLM's inference process, facilitating flexible and independent resource scheduling that optimizes computational performance and enhances memory utilization jointly. By leveraging a pooled GPU memory strategy across a cluster, Infinite-LLM not only significantly boosts system throughput but also supports extensive context lengths. Evaluated on a dataset with context lengths ranging from a few to 2000K tokens across a cluster with 32 A100 GPUs, Infinite-LLM demonstrates throughput improvement of 1.35-3.4x compared to state-of-the-art methods, enabling efficient and elastic LLM deployment.
Submission history
From: Bin Lin [view email][v1] Fri, 5 Jan 2024 06:53:00 UTC (20,608 KB)
[v2] Thu, 4 Jul 2024 15:12:54 UTC (13,201 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.