Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Sep 2023]
Title:Class Relevance Learning For Out-of-distribution Detection
View PDFAbstract:Image classification plays a pivotal role across diverse applications, yet challenges persist when models are deployed in real-world scenarios. Notably, these models falter in detecting unfamiliar classes that were not incorporated during classifier training, a formidable hurdle for safe and effective real-world model deployment, commonly known as out-of-distribution (OOD) detection. While existing techniques, like max logits, aim to leverage logits for OOD identification, they often disregard the intricate interclass relationships that underlie effective detection. This paper presents an innovative class relevance learning method tailored for OOD detection. Our method establishes a comprehensive class relevance learning framework, strategically harnessing interclass relationships within the OOD pipeline. This framework significantly augments OOD detection capabilities. Extensive experimentation on diverse datasets, encompassing generic image classification datasets (Near OOD and Far OOD datasets), demonstrates the superiority of our method over state-of-the-art alternatives for OOD detection.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.