Computer Science > Computers and Society
[Submitted on 8 Dec 2023]
Title:Emissions Reporting Maturity Model: supporting cities to leverage emissions-related processes through performance indicators and artificial intelligence
View PDF HTML (experimental)Abstract:Climate change and global warming have been trending topics worldwide since the Eco-92 conference. However, little progress has been made in reducing greenhouse gases (GHGs). The problems and challenges related to emissions are complex and require a concerted and comprehensive effort to address them. Emissions reporting is a critical component of GHG reduction policy and is therefore the focus of this work. The main goal of this work is two-fold: (i) to propose an emission reporting evaluation model to leverage emissions reporting overall quality and (ii) to use artificial intelligence (AI) to support the initiatives that improve emissions reporting. Thus, this work presents an Emissions Reporting Maturity Model (ERMM) for examining, clustering, and analysing data from emissions reporting initiatives to help the cities to deal with climate change and global warming challenges. The Performance Indicator Development Process (PIDP) proposed in this work provides ways to leverage the quality of the available data necessary for the execution of the evaluations identified by the ERMM. Hence, the PIDP supports the preparation of the data from emissions-related databases, the classification of the data according to similarities highlighted by different clustering techniques, and the identification of performance indicator candidates, which are strengthened by a qualitative analysis of selected data samples. Thus, the main goal of ERRM is to evaluate and classify the cities regarding the emission reporting processes, pointing out the drawbacks and challenges faced by other cities from different contexts, and at the end to help them to leverage the underlying emissions-related processes and emissions mitigation initiatives.
Submission history
From: Victor De Almeida Xavier [view email][v1] Fri, 8 Dec 2023 17:51:57 UTC (2,760 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.