Computer Science > Computer Science and Game Theory
[Submitted on 27 Dec 2023 (v1), last revised 12 Aug 2024 (this version, v2)]
Title:Computing Balanced Solutions for Large International Kidney Exchange Schemes When Cycle Length Is Unbounded
View PDF HTML (experimental)Abstract:In kidney exchange programmes (KEP) patients may swap their incompatible donors leading to cycles of kidney transplants. Nowadays, countries try to merge their national patient-donor pools leading to international KEPs (IKEPs). As shown in the literature, long-term stability of an IKEP can be achieved through a credit-based system. In each round, every country is prescribed a "fair" initial allocation of kidney transplants. The initial allocation, which we obtain by using solution concepts from cooperative game theory, is adjusted by incorporating credits from the previous round, yielding the target allocation. The goal is to find, in each round, an optimal solution that closely approximates this target allocation. There is a known polynomial-time algorithm for finding an optimal solution that lexicographically minimizes the country deviations from the target allocation if only $2$-cycles (matchings) are permitted. In practice, kidney swaps along longer cycles may be performed. However, the problem of computing optimal solutions for maximum cycle length $\ell$ is NP-hard for every $\ell\geq 3$. This situation changes back to polynomial time once we allow unbounded cycle length. However, in contrast to the case where $\ell=2$, we show that for $\ell=\infty$, lexicographical minimization is only polynomial-time solvable under additional conditions (assuming P $\neq$ NP). Nevertheless, the fact that the optimal solutions themselves can be computed in polynomial time if $\ell=\infty$ still enables us to perform a large scale experimental study for showing how stability and total social welfare are affected when we set $\ell=\infty$ instead of $\ell=2$.
Submission history
From: Daniel Paulusma [view email][v1] Wed, 27 Dec 2023 17:58:00 UTC (261 KB)
[v2] Mon, 12 Aug 2024 17:29:15 UTC (892 KB)
Current browse context:
cs.GT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.