Mathematics > Probability
[Submitted on 22 Dec 2023]
Title:On a Near-Optimal \& Efficient Algorithm for the Sparse Pooled Data Problem
View PDF HTML (experimental)Abstract:The pooled data problem asks to identify the unknown labels of a set of items from condensed measurements. More precisely, given $n$ items, assume that each item has a label in $\cbc{0,1,\ldots, d}$, encoded via the ground-truth $\SIGMA$. We call the pooled data problem sparse if the number of non-zero entries of $\SIGMA$ scales as $k \sim n^{\theta}$ for $\theta \in (0,1)$. The information that is revealed about $\SIGMA$ comes from pooled measurements, each indicating how many items of each label are contained in the pool. The most basic question is to design a pooling scheme that uses as few pools as possible, while reconstructing $\SIGMA$ with high probability. Variants of the problem and its combinatorial ramifications have been studied for at least 35 years. However, the study of the modern question of \emph{efficient} inference of the labels has suggested a statistical-to-computational gap of order $\log n$ in the minimum number of pools needed for theoretically possible versus efficient inference. In this article, we resolve the question whether this $\log n$-gap is artificial or of a fundamental nature by the design of an efficient algorithm, called \algoname, based upon a novel pooling scheme on a number of pools very close to the information-theoretic threshold.
Current browse context:
math.PR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.