Computer Science > Cryptography and Security
[Submitted on 21 Dec 2023]
Title:Efficient quantum algorithms for some instances of the semidirect discrete logarithm problem
View PDF HTML (experimental)Abstract:The semidirect discrete logarithm problem (SDLP) is the following analogue of the standard discrete logarithm problem in the semidirect product semigroup $G\rtimes \mathrm{End}(G)$ for a finite semigroup $G$. Given $g\in G, \sigma\in \mathrm{End}(G)$, and $h=\prod_{i=0}^{t-1}\sigma^i(g)$ for some integer $t$, the SDLP$(G,\sigma)$, for $g$ and $h$, asks to determine $t$. As Shor's algorithm crucially depends on commutativity, it is believed not to be applicable to the SDLP. Previously, the best known algorithm for the SDLP was based on Kuperberg's subexponential time quantum algorithm. Still, the problem plays a central role in the security of certain proposed cryptosystems in the family of \textit{semidirect product key exchange}. This includes a recently proposed signature protocol called SPDH-Sign. In this paper, we show that the SDLP is even easier in some important special cases. Specifically, for a finite group $G$, we describe quantum algorithms for the SDLP in $G\rtimes \mathrm{Aut}(G)$ for the following two classes of instances: the first one is when $G$ is solvable and the second is when $G$ is a matrix group and a power of $\sigma$ with a polynomially small exponent is an inner automorphism of $G$. We further extend the results to groups composed of factors from these classes. A consequence is that SPDH-Sign and similar cryptosystems whose security assumption is based on the presumed hardness of the SDLP in the cases described above are insecure against quantum attacks. The quantum ingredients we rely on are not new: these are Shor's factoring and discrete logarithm algorithms and well-known generalizations.
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.