Computer Science > Artificial Intelligence
[Submitted on 16 Dec 2023]
Title:Decomposing Hard SAT Instances with Metaheuristic Optimization
View PDF HTML (experimental)Abstract:In the article, within the framework of the Boolean Satisfiability problem (SAT), the problem of estimating the hardness of specific Boolean formulas w.r.t. a specific complete SAT solving algorithm is considered. Based on the well-known Strong Backdoor Set (SBS) concept, we introduce the notion of decomposition hardness (d-hardness). If $B$ is an arbitrary subset of the set of variables occurring in a SAT formula $C$, and $A$ is an arbitrary complete SAT solver , then the d-hardness expresses an estimate of the hardness of $C$ w.r.t. $A$ and $B$. We show that the d-hardness of $C$ w.r.t. a particular $B$ can be expressed in terms of the expected value of a special random variable associated with $A$, $B$, and $C$. For its computational evaluation, algorithms based on the Monte Carlo method can be used. The problem of finding $B$ with the minimum value of d-hardness is formulated as an optimization problem for a pseudo-Boolean function whose values are calculated as a result of a probabilistic experiment. To minimize this function, we use evolutionary algorithms. In the experimental part, we demonstrate the applicability of the concept of d-hardness and the methods of its estimation to solving hard unsatisfiable SAT instances.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.