Computer Science > Computation and Language
[Submitted on 8 Dec 2023]
Title:Partial Rewriting for Multi-Stage ASR
View PDF HTML (experimental)Abstract:For many streaming automatic speech recognition tasks, it is important to provide timely intermediate streaming results, while refining a high quality final result. This can be done using a multi-stage architecture, where a small left-context only model creates streaming results and a larger left- and right-context model produces a final result at the end. While this significantly improves the quality of the final results without compromising the streaming emission latency of the system, streaming results do not benefit from the quality improvements. Here, we propose using a text manipulation algorithm that merges the streaming outputs of both models. We improve the quality of streaming results by around 10%, without altering the final results. Our approach introduces no additional latency and reduces flickering. It is also lightweight, does not require retraining the model, and it can be applied to a wide variety of multi-stage architectures.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.