Electrical Engineering and Systems Science > Signal Processing
[Submitted on 18 Nov 2023]
Title:Efficient Multi-Pair IoT Communication with Holographically Enhanced Meta-Surfaces Leveraging OAM Beams: Bridging Theory and Prototype
View PDFAbstract:Meta-surfaces, also known as Reconfigurable Intelligent Surfaces (RIS), have emerged as a cost-effective, low power consumption, and flexible solution for enabling multiple applications in Internet of Things (IoT). However, in the context of meta-surface-assisted multi-pair IoT communications, significant interference issues often arise amount multiple channels. This issue is particularly pronounced in scenarios characterized by Line-of-Sight (LoS) conditions, where the channels exhibit low rank due to the significant correlation in propagation paths. These challenges pose a considerable threat to the quality of communication when multiplexing data streams. In this paper, we introduce a meta-surface-aided communication scheme for multi-pair interactions in IoT environments. Inspired by holographic technology, a novel compensation method on the whole meta-surface has been proposed, which allows for independent multi-pair direct data streams transmission with low interference. To further reduce correlation under LoS channel conditions, we propose a vortex beam-based solution that leverages the low correlation property between distinct topological modes. We use different vortex beams to carry distinct data streams, thereby enabling distinct receivers to capture their intended signal with low interference, aided by holographic meta-surfaces. Moreover, a prototype has been performed successfully to demonstrate two-pair multi-node communication scenario operating at 10 GHz with QPSK/16-QAM modulation.
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.