Computer Science > Machine Learning
[Submitted on 13 Dec 2023 (v1), last revised 22 Oct 2024 (this version, v3)]
Title:Universal approximation property of Banach space-valued random feature models including random neural networks
View PDF HTML (experimental)Abstract:We introduce a Banach space-valued extension of random feature learning, a data-driven supervised machine learning technique for large-scale kernel approximation. By randomly initializing the feature maps, only the linear readout needs to be trained, which reduces the computational complexity substantially. Viewing random feature models as Banach space-valued random variables, we prove a universal approximation result in the corresponding Bochner space. Moreover, we derive approximation rates and an explicit algorithm to learn an element of the given Banach space by such models. The framework of this paper includes random trigonometric/Fourier regression and in particular random neural networks which are single-hidden-layer feedforward neural networks whose weights and biases are randomly initialized, whence only the linear readout needs to be trained. For the latter, we can then lift the universal approximation property of deterministic neural networks to random neural networks, even within function spaces over non-compact domains, e.g., weighted spaces, $L^p$-spaces, and (weighted) Sobolev spaces, where the latter includes the approximation of the (weak) derivatives. In addition, we analyze when the training costs for approximating a given function grow polynomially in both the input/output dimension and the reciprocal of a pre-specified tolerated approximation error. Furthermore, we demonstrate in a numerical example the empirical advantages of random feature models over their deterministic counterparts.
Submission history
From: Ariel Neufeld [view email][v1] Wed, 13 Dec 2023 11:27:15 UTC (2,378 KB)
[v2] Wed, 20 Dec 2023 08:16:10 UTC (2,095 KB)
[v3] Tue, 22 Oct 2024 17:29:47 UTC (651 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.