Computer Science > Computer Vision and Pattern Recognition
[Submitted on 6 Dec 2023 (v1), last revised 1 Aug 2024 (this version, v4)]
Title:Lite-Mind: Towards Efficient and Robust Brain Representation Network
View PDF HTML (experimental)Abstract:The limited data availability and the low signal-to-noise ratio of fMRI signals lead to the challenging task of fMRI-to-image retrieval. State-of-the-art MindEye remarkably improves fMRI-to-image retrieval performance by leveraging a large model, i.e., a 996M MLP Backbone per subject, to align fMRI embeddings to the final hidden layer of CLIP's Vision Transformer (ViT). However, significant individual variations exist among subjects, even under identical experimental setups, mandating the training of large subject-specific models. The substantial parameters pose significant challenges in deploying fMRI decoding on practical devices. To this end, we propose Lite-Mind, a lightweight, efficient, and robust brain representation learning paradigm based on Discrete Fourier Transform (DFT), which efficiently aligns fMRI voxels to fine-grained information of CLIP. We elaborately design a DFT backbone with Spectrum Compression and Frequency Projector modules to learn informative and robust voxel embeddings. Our experiments demonstrate that Lite-Mind achieves an impressive 94.6% fMRI-to-image retrieval accuracy on the NSD dataset for Subject 1, with 98.7% fewer parameters than MindEye. Lite-Mind is also proven to be able to be migrated to smaller fMRI datasets and establishes a new state-of-the-art for zero-shot classification on the GOD dataset.
Submission history
From: Qi Zhang [view email][v1] Wed, 6 Dec 2023 09:39:38 UTC (39,044 KB)
[v2] Tue, 12 Mar 2024 08:13:01 UTC (41,069 KB)
[v3] Fri, 19 Apr 2024 05:45:25 UTC (39,581 KB)
[v4] Thu, 1 Aug 2024 07:29:47 UTC (45,888 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.