Computer Science > Data Structures and Algorithms
[Submitted on 3 Dec 2023 (v1), last revised 4 Jun 2024 (this version, v3)]
Title:Suffixient Sets
View PDF HTML (experimental)Abstract:We define a suffixient set for a text $T [1..n]$ to be a set $S$ of positions between 1 and $n$ such that, for any edge descending from a node $u$ to a node $v$ in the suffix tree of $T$, there is an element $s \in S$ such that $u$'s path label is a suffix of $T [1..s - 1]$ and $T [s]$ is the first character of $(u, v)$'s edge label. We first show there is a suffixient set of cardinality at most $2 \bar{r}$, where $\bar{r}$ is the number of runs in the Burrows-Wheeler Transform of the reverse of $T$. We then show that, given a straight-line program for $T$ with $g$ rules, we can build an $O (\bar{r} + g)$-space index with which, given a pattern $P [1..m]$, we can find the maximal exact matches (MEMs) of $P$ with respect to $T$ in $O (m \log (\sigma) / \log n + d \log n)$ time, where $\sigma$ is the size of the alphabet and $d$ is the number of times we would fully or partially descend edges in the suffix tree of $T$ while finding those MEMs.
Submission history
From: Travis Gagie [view email][v1] Sun, 3 Dec 2023 11:53:55 UTC (5 KB)
[v2] Sun, 17 Mar 2024 17:57:46 UTC (5 KB)
[v3] Tue, 4 Jun 2024 19:41:52 UTC (111 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.