Computer Science > Computer Vision and Pattern Recognition
[Submitted on 30 Nov 2023 (v1), last revised 29 Nov 2024 (this version, v2)]
Title:Layered Rendering Diffusion Model for Controllable Zero-Shot Image Synthesis
View PDF HTML (experimental)Abstract:This paper introduces innovative solutions to enhance spatial controllability in diffusion models reliant on text queries. We first introduce vision guidance as a foundational spatial cue within the perturbed distribution. This significantly refines the search space in a zero-shot paradigm to focus on the image sampling process adhering to the spatial layout conditions. To precisely control the spatial layouts of multiple visual concepts with the employment of vision guidance, we propose a universal framework, Layered Rendering Diffusion (LRDiff), which constructs an image-rendering process with multiple layers, each of which applies the vision guidance to instructively estimate the denoising direction for a single object. Such a layered rendering strategy effectively prevents issues like unintended conceptual blending or mismatches while allowing for more coherent and contextually accurate image synthesis. The proposed method offers a more efficient and accurate means of synthesising images that align with specific layout and contextual requirements. Through experiments, we demonstrate that our method outperforms existing techniques, both quantitatively and qualitatively, in two specific layout-to-image tasks: bounding box-to-image and instance maskto-image. Furthermore, we extend the proposed framework to enable spatially controllable editing
Submission history
From: Zipeng Qi [view email][v1] Thu, 30 Nov 2023 10:36:19 UTC (14,817 KB)
[v2] Fri, 29 Nov 2024 04:23:28 UTC (18,979 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.