Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 Nov 2023]
Title:GS-Pose: Category-Level Object Pose Estimation via Geometric and Semantic Correspondence
View PDFAbstract:Category-level pose estimation is a challenging task with many potential applications in computer vision and robotics. Recently, deep-learning-based approaches have made great progress, but are typically hindered by the need for large datasets of either pose-labelled real images or carefully tuned photorealistic simulators. This can be avoided by using only geometry inputs such as depth images to reduce the domain-gap but these approaches suffer from a lack of semantic information, which can be vital in the pose estimation problem. To resolve this conflict, we propose to utilize both geometric and semantic features obtained from a pre-trained foundation this http URL approach projects 2D features from this foundation model into 3D for a single object model per category, and then performs matching against this for new single view observations of unseen object instances with a trained matching network. This requires significantly less data to train than prior methods since the semantic features are robust to object texture and appearance. We demonstrate this with a rich evaluation, showing improved performance over prior methods with a fraction of the data required.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.