Computer Science > Computer Vision and Pattern Recognition
[Submitted on 22 Nov 2023 (v1), last revised 1 May 2024 (this version, v2)]
Title:Learning to Complement with Multiple Humans
View PDF HTML (experimental)Abstract:Real-world image classification tasks tend to be complex, where expert labellers are sometimes unsure about the classes present in the images, leading to the issue of learning with noisy labels (LNL). The ill-posedness of the LNL task requires the adoption of strong assumptions or the use of multiple noisy labels per training image, resulting in accurate models that work well in isolation but fail to optimise human-AI collaborative classification (HAI-CC). Unlike such LNL methods, HAI-CC aims to leverage the synergies between human expertise and AI capabilities but requires clean training labels, limiting its real-world applicability. This paper addresses this gap by introducing the innovative Learning to Complement with Multiple Humans (LECOMH) approach. LECOMH is designed to learn from noisy labels without depending on clean labels, simultaneously maximising collaborative accuracy while minimising the cost of human collaboration, measured by the number of human expert annotations required per image. Additionally, new benchmarks featuring multiple noisy labels for both training and testing are proposed to evaluate HAI-CC methods. Through quantitative comparisons on these benchmarks, LECOMH consistently outperforms competitive HAI-CC approaches, human labellers, multi-rater learning, and noisy-label learning methods across various datasets, offering a promising solution for addressing real-world image classification challenges.
Submission history
From: Zheng Zhang [view email][v1] Wed, 22 Nov 2023 05:31:06 UTC (494 KB)
[v2] Wed, 1 May 2024 15:27:51 UTC (4,058 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.