Computer Science > Computer Vision and Pattern Recognition
[Submitted on 18 Nov 2023 (v1), last revised 7 Oct 2024 (this version, v2)]
Title:Expanding Scene Graph Boundaries: Fully Open-vocabulary Scene Graph Generation via Visual-Concept Alignment and Retention
View PDF HTML (experimental)Abstract:Scene Graph Generation (SGG) offers a structured representation critical in many computer vision applications. Traditional SGG approaches, however, are limited by a closed-set assumption, restricting their ability to recognize only predefined object and relation categories. To overcome this, we categorize SGG scenarios into four distinct settings based on the node and edge: Closed-set SGG, Open Vocabulary (object) Detection-based SGG (OvD-SGG), Open Vocabulary Relation-based SGG (OvR-SGG), and Open Vocabulary Detection + Relationbased SGG (OvD+R-SGG). While object-centric open vocabulary SGG has been studied recently, the more challenging problem of relation-involved open-vocabulary SGG remains relatively unexplored. To fill this gap, we propose a unified framework named OvSGTR towards fully open vocabulary SGG from a holistic view. The proposed framework is an end-to-end transformer architecture, which learns a visual-concept alignment for both nodes and edges, enabling the model to recognize unseen categories. For the more challenging settings of relation-involved open vocabulary SGG, the proposed approach integrates relation-aware pretraining utilizing image-caption data and retains visual-concept alignment through knowledge distillation. Comprehensive experimental results on the Visual Genome benchmark demonstrate the effectiveness and superiority of the proposed framework. Our code is available at this https URL.
Submission history
From: Zuyao Chen [view email][v1] Sat, 18 Nov 2023 06:49:17 UTC (3,895 KB)
[v2] Mon, 7 Oct 2024 07:15:19 UTC (8,441 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.